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Searching in Large Graph Databases

Goal: Find graphs similar to a query graph e�ciently

Graph Edit Distance (GED)

I Distance measure for graphs
I Transform one graph into the other (edit path)
I Cost of transformation =̂ GED

I NP-hard problem

Notation

Cost of Edit Operations:

cv : delete/insert vertex
ce : delete/insert edge
cvl : change label of vertex
cel : change label of edge

Our Contribution

Tight lower bounds for e�cient filtering
I E�cient lower bounds for the graph edit distance based on tree metrics
I Embeddable to `1→ index for vectors can be used
I Suitable for similarity search
I Lower bound for generating initial candidates

Filter Refinement

Result

Lower Bounds Based on Optimal Assignments

I Compute optimal assignment between vertices
I Cost of assignment =̂ lower bound for GED
I Embeddable to `1 if cost function is tree metric

Embedding Assignment Costs

I Cost function has to be a tree metric
I Representable as tree T with cost =̂ length of path
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I S←−uv: #s ∈ S associated with nodes in subtree containing u
when deleting uv

I Cost of optimal assignment:
∑

uv∈E(T) | A←−uv − B←−uv | ·w(uv)
I φ(S) = [S←−uv · w(uv)]uv∈E(T)

Label Lower Bound (LLB)

I Minimum vertex relabelings/deletions
I Edge weights:

w1 = cv − 0.5 · cvl w2 = 0.5 · cvl
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Degree Lower Bound (DLB)

I Minimum edge insertions/deletions based on
vertex degrees

I Edge weights: w3 = 0.5 · ce

I Each operation influences degree of two vertices
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Combined Lower Bound (CLB)

I Combines LLB and DLB
I dCLB(G1,G2) = dLLB(G1,G2) + dDLB(G1,G2)

Comparison of Approximation Quality
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Conclusion

I E�ciently computable tight lower bounds
I Scalable to databases with millions of graphs
I Optimization of runtime (choice of edge direction)
I kNN and range queries both supported
I Speed up state-of-the-art approaches through pre-filtering

Comparison to State-of-the-Art
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