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» Distance measure for graphs
» Transform one graph into the other (edit path)
» Cost of transformation = GED
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» NP-hard problem

Cost of Edit Operations:

C, : delete/insert vertex
C. : delete/insert edge

Cy : change label of vertex
Cel : change label of edge
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Our Contribution

Tight lower bounds for efficient filtering Fas . | .

Filter Refinement
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» Efficient lower bounds for the graph edit distance based on tree metrics
» Embeddable to ¢, — index for vectors can be used

» Suitable for similarity search

» Lower bound for generating initial candidates

| Result

Label Lower Bound (LLB)

Lower Bounds Based on Optimal Assignhments

Degree Lower Bound (DLB)

» Compute optimal assignment between vertices
» Cost of assignment = lower bound for GED
» Embeddable to ¢; if cost function is tree metric

» Minimum edge insertions/deletions based on
vertex degrees

» Edge weights: w3 = 0.5 - ¢,
» Each operation influences degree of two vertices

» Minimum vertex relabelings/deletions

» Edge weights:
¢
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Embedding Assignment Costs

» Cost function has to be a tree metric

» Representable as tree T with cost = length of path O(Gl) O(GM%) o(G) o(G,)
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Combined Lower Bound (CLB)

» Combines LLB and DLB
» dcip(Gi, Gy) = dg(Gr, Gy) + dpre(Gr, Gy)

> S #s € S associated with nodes in subtree containing u
when deleting uv

> Cost of optimal assignment: > . | A
> o(S) = S - W) epm)
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Comparison of Approximation Quality Comparison to State-of-the-Art
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» Efficiently computable tight lower bounds > ~§ :
» Scalable to databases with millions of graphs < 3
» Optimization of runtime (choice of edge direction) = £ )
» kNN and range queries both supported “ o R T
» Speed up state-of-the-art approaches through pre-filtering b2 3 49 b2 8 49
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