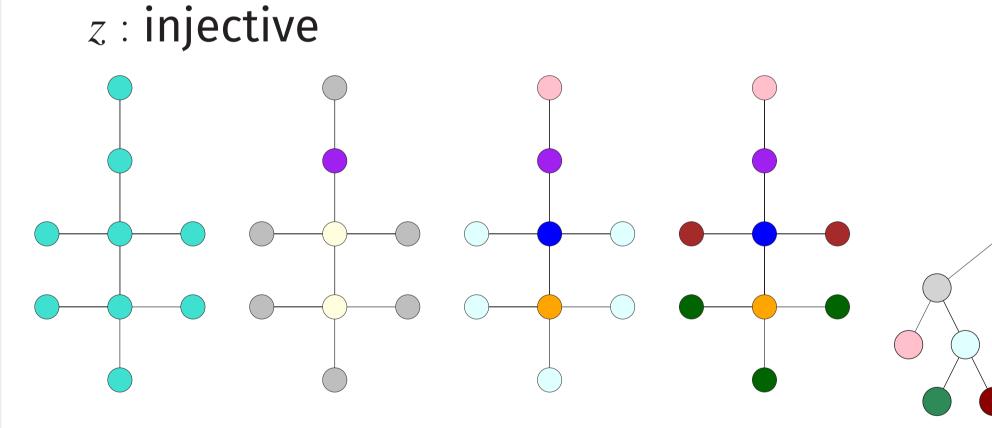
Franka Bause, Nils M. Kriege

University of Vienna

Problem

Weisfeiler-Leman colors diverge too quickly!


- ► Node with degree 4 as similar to degree 1 as to degree 6
- WL-based graph kernels: only few iterations used

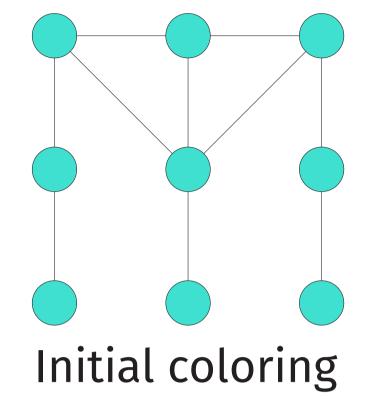
- Idea: restrict number of new colors per iteration
- Reach stable coloring slower

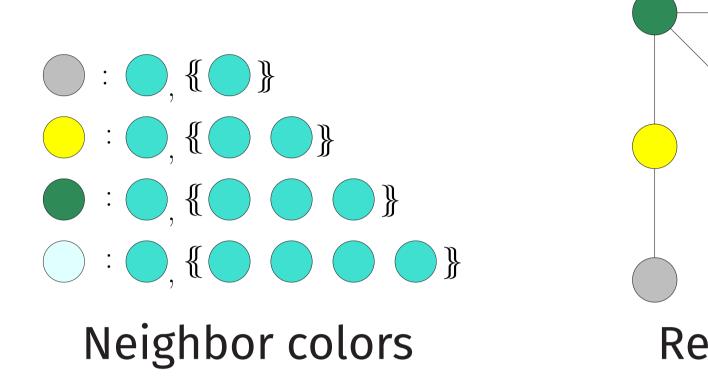
Weisfeiler-Leman/Color Refinement

Initial coloring: uniform/depending on node label Update color of nodes:

$$c_{i+1}(v) = z(c_i(v), \{\!\!\{c_i(u) | u \in N(v)\}\!\!\}),$$

Iteration 1 Iteration 2 Iteration 3 Color hierarchy Initial coloring Colors can be represented in a hierarchy


Our Contribution


- **Generalizing** color refinement: refining, neighborhood preserving (**renep**) functions
- Connections to original Weisfeiler-Leman algorithm and other vertex refinement strategies
- Two new graph kernels based on renep functions
- Application to approximating the graph edit distance

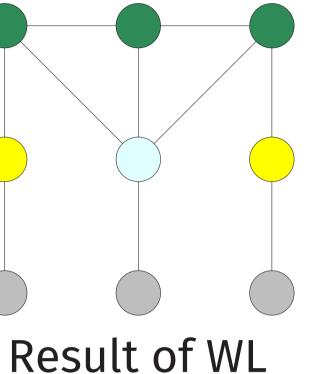
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race

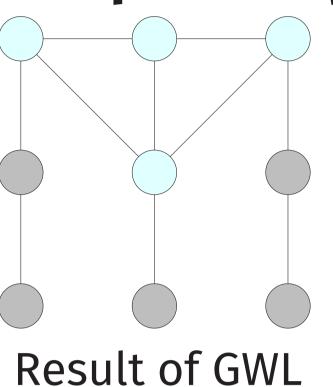
Gradual Weisfeiler-Leman Refinement

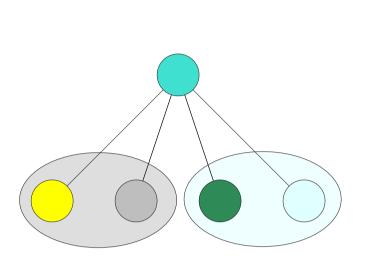
Idea: **Slow** down **convergence** of color refinement using a non-injective data-dependent

Update function:

- New coloring is a refinement of previous coloring \Rightarrow Nodes with different old colors get different new colors
- Nodes with equal old colors and equal neighbor label multiset get equal new colors
- New coloring is equal to old coloring stable (WL) coloring reached

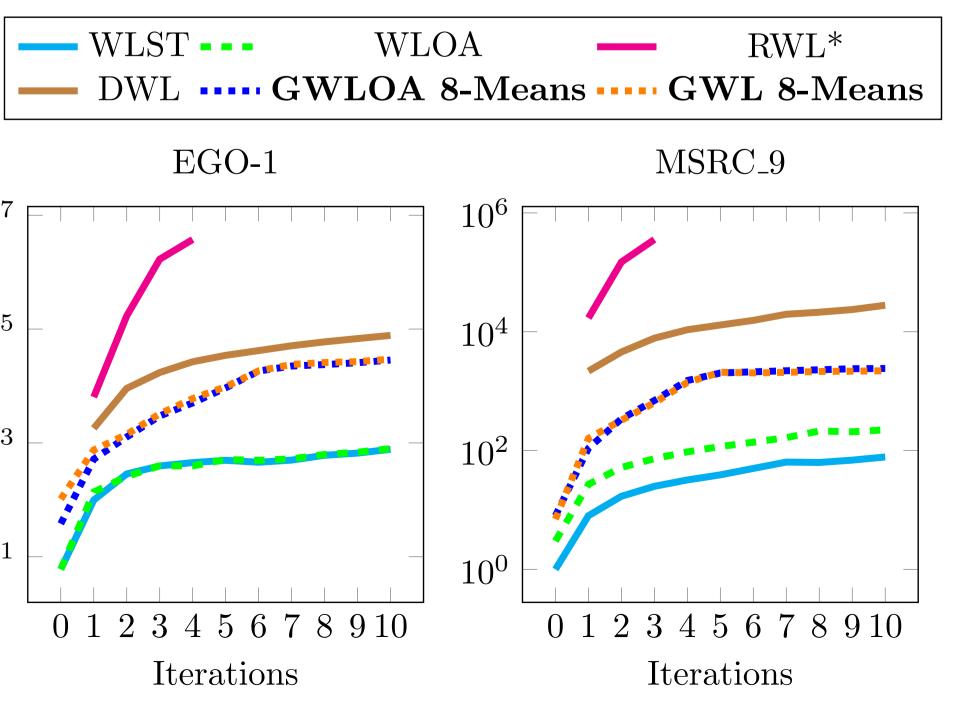

Color Update using Clustering


- Interpret neighbor color multisets as vectors
- Cluster vectors for each old color separately (clusters imply new colors)
- k-means clustering: number of new colors can be controlled easily


Classification Accuracy

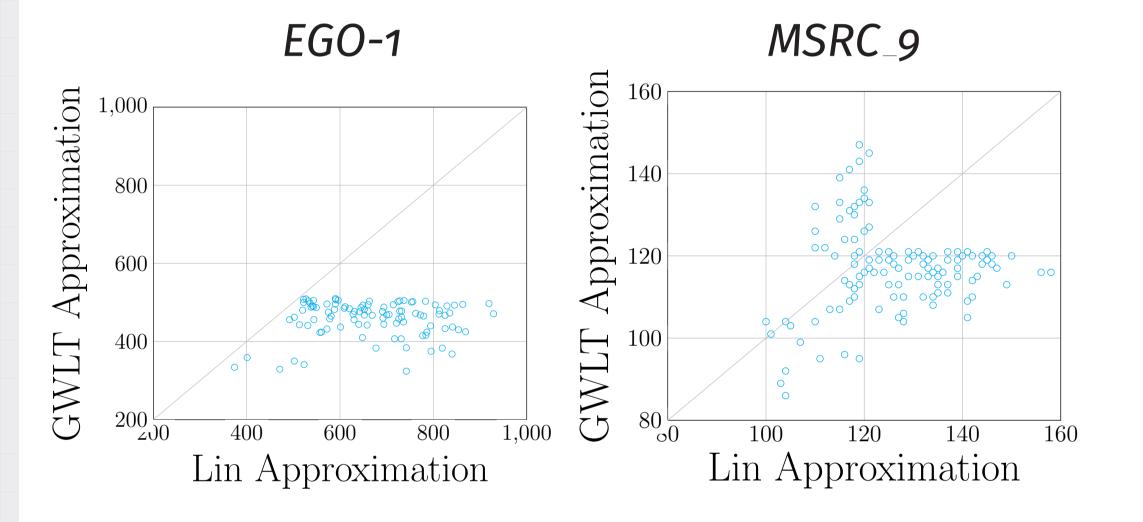
Kernel	PTC_FM	KKI	EGO-1	EGO-2		G١
WLST [1	$[] 64.16 \pm 1.30$	49.97 ± 2.88	$51.30{\scriptstyle~\pm2.42}$	$57.15{\scriptstyle~\pm1.61}$		G
DWL [2	$2] 64.18 \pm 1.46$	50.93 ± 2.87	$55.80{\scriptstyle~\pm1.35}$	$56.50{\scriptstyle~\pm1.64}$		Г
RWL* [3	$6] 62.43 \pm 1.46$	46.54 ± 4.03	$65.60{\scriptstyle~\pm2.74}$	$70.20{\scriptstyle~\pm1.36}$		
WLOA [4	$+] 62.34 \pm 1.39$	48.72 ± 4.05	$55.95{\scriptstyle~\pm1.11}$	$60.30{\scriptstyle~\pm 2.00}$		L
GWL	$62.61 \scriptstyle~\pm 1.94$	57.79 ±3.95	$567.95\scriptstyle~\pm 2.05$	$73.65 \scriptstyle \pm 1.86$		107
GWLOA	64.58 ± 1.77	47.47 ± 2.41	69.80 ± 1.65	$72.40{\scriptstyle~\pm 2.52}$		10^{7}
	COLLAB	DD	IMDB-B	MSRC_9	US	10^{5}
WLST	70.00					
	78.98 ± 0.22	79.00 ± 0.52	72.01 ± 0.80	90.13 ± 0.75	ini	
	$78.98 \pm 0.22 \\ 78.93 \pm 0.18$				le in	
DWL		$78.92{\scriptstyle~\pm 0.40}$	72.36 ± 0.56	90.50 ± 0.76	Time in 1	10^{3}
DWL RWL*	$78.93{\scriptstyle~\pm 0.18}$	$78.92 \pm 0.40 7$ $77.52 \pm 0.65 7$	$\begin{array}{c} 72.36 \pm 0.56 \\ 72.96 \pm 0.86 \end{array}$	90.50 ± 0.76 88.86 ± 0.89	le in	10^{3}
DWL RWL*	$\begin{array}{l} 78.93 \pm 0.18 \\ 77.94 \pm 0.38 \\ 80.81 \pm 0.22 \end{array}$	$\begin{array}{c} 78.92 \pm 0.40 \\ 77.52 \pm 0.65 \\ \textbf{79.44} \pm 0.31 \end{array}$	$\begin{array}{c} 72.36 \pm 0.56 \\ 72.96 \pm 0.86 \end{array}$	90.50 ± 0.76 88.86 ± 0.89 90.68 ± 0.92	le in	
DWL RWL* WLOA GWL	$\begin{array}{l} 78.93 \pm 0.18 \\ 77.94 \pm 0.38 \\ 80.81 \pm 0.22 \end{array}$	78.92 ± 0.40 77.52 ± 0.65 79.44 ± 0.31 79.00 ± 0.81	$72.36 \pm 0.56 \ 9$ $72.96 \pm 0.86 \ 8$ $72.60 \pm 0.89 \ 9$ $73.66 \pm 1.25 \ 8$	90.50 ± 0.76 88.86 ± 0.89 90.68 ± 0.92 88.32 ± 1.20	le in	10^{3}

update function **preserving** Weisfeiler-Leman **expressivity**



Color hierarchy

Running Time


WL: WLST kernel with GWL coloring **WLOA:** WLOA kernel with GWL coloring

Approximating the Graph Edit Distance

- **GED**: cost of transforming one graph into another
- Use tree metric from GWL for node similarity
- Find optimal assignment between the nodes
- Cost of (sub-optimal) edit path derived from assignment $\hat{=}$ **upper bound** for GED
- Lin [5]: underlying node similarity based on WL **GWLT**: underlying node similarity based on GWL

Conclusion and Future Work

Better measure for vertex similarity!

Future Work

- Explore other possible update functions
- Incorporate continuous attributes

preprint on arXiv \longrightarrow

https://github.com/frareba @frar3ba

References

- Shervashidze et al., Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res, 2011.
- Yanardag and Vishwanathan, Deep graph kernels. SIGKDD, 2015.
- Schulz et al., A generalized Weisfeiler-Lehman graph kernel. Mach Learn, 2022.
- [4] Kriege et al., On valid optimal assignment kernels and applications to graph classification. NIPS, 2016.
- Kriege et al., Computing optimal assignments in linear time for approximate graph matching. ICDM, 2019.