Approximating the Graph Edit Distance with Compact Neighborhood Representations

Franka Bause, Christian Permann, Nils M. Kriege

Motivation and Idea Bipartite Graph Matching [Riesen and Bunke, 2009] **Graph Edit Distance (GED) Goal:** Approximate graph edit distance **Distance measure** for graphs Compute minimal assignment between vertices of Transform one graph into the other (edit path) the two graphs Use bipartite graph matching **Cost of transformation** $\hat{=}$ **GED** Create cost matrix Find better cost function for vertex Solve assignment problem (cubic runtime) assignment Derive edit path from assignment (linear runtime) Incorporate neighborhood information **Approximated GED** $\hat{=}$ cost of (sub-optimal) edit path **Efficient** computation NP-hard problem

Our Contribution

Input Graphs	Neighborhood Trees	Optimal Vertex Assignment based on SDTED

- Tree structures encoding node neighborhoods and tree edit distance as cost function in BGM framework
- Neighborhood trees: compact variation of Weisfeiler-Leman unfolding trees
- Tree edit distance in $O(n^2 \Delta)$ for two trees with *n* vertices and maximum degree Δ
- Caching and compression to accelerate computation

k-Redundant Neighborhood Trees (k-NTs)

- ► $T_{i,k}^{v}$: *k*-NT of $v \in V(G)$ with height *i*
- **Subtree of unfolding tree** F_i^v
- Node can occur only up to k layers after first occurrence
- Compressed versions (*cT*) with bounded size $O(|E(G)| \cdot (k+1))$ and maximum height diam(G) + k

Structure- and Depth-Preserving Tree Edit Distance (SDTED) [Schulz et al., 2022]

- Distance function for rooted trees
- Find **minimal cost mapping**, so that:
 - Roots are mapped to each other
 - **Two nodes are mapped** \Rightarrow parents are mapped
- Find mapping recursively by solving optimal assignments on children
- Computation in $O(nn'\Delta)$ time (for two trees with n and n' vertices and maximum degree Δ)

Theoretical Time Complexity (for Creating Cost Matrix)

- ► *Δ*: maximum degree
- h: radius of subgraphs/walk length
- ω : exponent of matrix multiplication (typically $\omega \approx 2.81$)
- ► Bounded-degree graphs: △ bounded by constant

Underlying Cost Function for SDTED Computation

Quality of Approximation

Runtime Comparison

Average Relative Approximation Error

Comparison of Different Bounds

Conclusion

- Approximation quality better than computationally more expensive methods
 Efficient computation
- Limiting height of trees: trade-off between runtime and accuracy

September 9 – 13, 2024